# Algoritmi e Strutture Dati Alberi AVL

Maria Rita Di Berardini, Emanuela Merelli<sup>1</sup>

<sup>1</sup>Dipartimento di Matematica e Informatica Università di Camerino

## Alberi AVL

**Definizione** (bilanciamento in altezza): un albero è bilanciato in altezza se le altezze dei sottoalberi sinistro e destro di ogni suo nodo differiscono al più di uno

Gli alberi AVL sono alberi binari di ricerca bilanciati in altezza

AVL (Adelson-Velskii e Landis)

**Definizione** (fattore di bilanciamento): il fattore di bilanciamento  $\beta(v)$  di un nodo v è la differenza tra l'altezza del suo sottoalbero sinistro e quella del suo sottoalbero destro

$$\beta(v) = altezza[left[v]] - altezza[right[v]]$$



## Alberi AVL

Il fattore di bilanciamento è tanto migliore quanto più piccolo è il suo valore assoluto

- alberi completi: il fattore di bilanciamento di ogni nodo è 0
- alberi bilanciati (alberi AVL):  $|\beta(v)| \leq 1$  per ogni nodo v
- alberi degenerati in una lista: il fattore di bilanciamento è pari altezza dell'albero (n-1 dove n è il numero di nodi dell'albero)

**Definizione** (*bilanciamento in altezza*) – definizione alternativa: un albero è bilanciato in altezza se, per ogni nodo v,  $|\beta(v)| \leq 1$ 



Alberi bilanciati (e quindi alberi AVL) sono particolarmente adatti per realizzare efficienti strutture di tipo dizionario (insiemi dinamici su cui eseguiamo inserimenti, cancellazioni e ricerche)

L'altezza h di un albero T bilanciato è logaritmica nel numero di nodi n, ossia  $h = \Theta(\log_2 n)$ 

**Nota 1:**  $n \le 2^{h+1} - 1$ , cioè del numero di nodi di un albero binario completo di altezza h (fornisce un limite inferiore al valore di h)

**Nota 2:**  $n \ge N(h)$ , dove N(h) denota il **minimo** numero di nodi che un albero bilanciato di altezza h **deve** avere (fornisce un limite superiore al valore di h)



**Nota 1:**  $n \le 2^{h+1} - 1$ , ossia del numero di nodi di un albero binario completo di altezza h

$$n \le 2^{h+1} - 1 \Longrightarrow n+1 \le 2^{h+1} \Longrightarrow \log_2(n+1) \le h+1$$

e quindi

$$h \ge \log_2(n+1) - 1$$

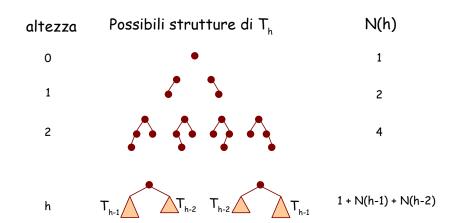


**Nota 2:**  $n \ge N(h)$ , dove N(h) denota il **minimo** numero di nodi che un albero bilanciato di altezza h **deve** avere

Quanto vale N(h) al variare di  $h \ge 0$ ? Dobbiamo identificare la struttura di tutti i possibili alberi bilanciati di altezza h con minino numero di nodi (questi alberi vengono detti alberi di Fibonacci)

Nel seguito indichiamo con  $T_h$  un albero di Fibonacci di altezza h





Ricapitolando ...

$$N(h) = \begin{cases} 1 + N(h-1) + N(h-2) & \text{se } h \ge 2\\ 1 & \text{se } h = 0\\ 2 & \text{se } h = 1 \end{cases}$$

Ricorda molto da vicino i ...

Ricapitolando ...

$$N(h) = \left\{ egin{array}{ll} 1 + N(h-1) + N(h-2) & ext{se } h \geq 2 \\ 1 & ext{se } h = 0 \\ 2 & ext{se } h = 1 \end{array} 
ight.$$

Ricorda molto da vicino i ... numeri di Fibonacci

$$F(n) = \begin{cases} F(n-1) + F(n-2) & \text{se } n \ge 3 \\ 1 & \text{se } n = 1, 2 \end{cases}$$

Possiamo dimostrare (per induzione su  $h \ge 0$ ) che

$$N(h) = F(h+3) - 1$$



Possiamo dimostrare (per induzione su  $h \ge 0$ ) che

$$N(h) = F(h+3) - 1$$

#### Caso Base

$$h = 0$$
:  $N(h) = 1 = 2 - 1 = F(3) - 1$   
 $h = 1$ :  $N(h) = 2 = 3 - 1 = F(4) - 1$ 

**Passo induttivo** sia h > 1. Allora:

$$N(h)$$
 =  $N(h-1) + N(h-2) + 1$   
per ip. ind. =  $(F(h-1+3)-1) + (F(h-2+3)-1) + 1$   
=  $F(h+2) + F(h+1) - 1$   
per la def. di  $F$  =  $F(h+3) - 1$ 



Posto  $\phi=rac{1+\sqrt{5}}{2}pprox 1.618$  e  $\hat{\phi}=rac{1-\sqrt{5}}{2}pprox -0.618$  abbiamo che

$$F(n) = \frac{1}{\sqrt{5}} (\phi^n - \hat{\phi}^n)$$

Quindi

$$N(h) = \frac{1}{\sqrt{5}} (\phi^{h+3} - (\hat{\phi})^{h+3}) - 1 = \frac{1}{\sqrt{5}} \phi^{h+3} - \frac{1}{\sqrt{5}} (\hat{\phi})^{h+3} - 1$$

Distinguiamo i seguenti casi

• h pari e h+3 dispari:

$$-\frac{1}{\sqrt{5}}(\hat{\phi})^{h+3} = \frac{1}{\sqrt{5}}(0,618)^{h+3} \ge -1$$

• h dispari e h+3 pari:

$$-\frac{1}{\sqrt{5}}(\hat{\phi})^{h+3} = -\frac{1}{\sqrt{5}}(0,618)^{h+3} \ge -\frac{1}{\sqrt{5}}(1)^{h+3} = -\frac{1}{\sqrt{5}} \ge -1$$

Possiamo concludere che

$$N(h) = \frac{1}{\sqrt{5}}\phi^{h+3} - \frac{1}{\sqrt{5}}(\hat{\phi})^{h+3} - 1 \ge \frac{1}{\sqrt{5}}\phi^{h+3} - 2$$



Sia T una albero binario di altezza h ed n il numero dei suoi nodi;

$$n \ge N(h) \ge \frac{1}{\sqrt{5}}\phi^{h+3} - 2$$
 e quindi  $n+2 \ge \frac{1}{\sqrt{5}}\phi^{h+3}$ 

Allora:

$$\begin{array}{lll} \log_2(n+2) & \geq & \log_2(\frac{1}{\sqrt{5}}\phi^{h+3}) \\ \log_2ab = \log_2a + \log_b & = & \log_2(\frac{1}{\sqrt{5}}) + \log_2(\phi^{h+3}) \\ \log_2a^k = k \log_2a & = & \log_2(\frac{1}{\sqrt{5}}) + (h+3)\log_2(\phi) \\ & = & \log_2(\frac{1}{\sqrt{5}}) + h\log_2(\phi) + 3\log_2(\phi) \\ k \log_2a = \log_2a^k & = & h\log_2(\phi) + \log_2(\frac{1}{\sqrt{5}}) + \log_2(\phi^3) \\ \log_2a + \log_2b = \log_2ab & = & h\log_2(\phi) + \log_2(\frac{1}{\sqrt{5}}\phi^3) \end{array}$$

Ora:

$$\log_2(n+2) \geq h \log_2(\phi) + \log_2(\frac{1}{\sqrt{5}}\phi^3)$$

implica

$$h\log_2(\phi) \leq \log_2(n+2) - \log_2(\frac{1}{\sqrt{5}}\phi^3)$$

Infine, poichè  $\phi=rac{1+\sqrt{5}}{2}>1$  implica  $\log_2\phi>0$ , abbiamo

$$h \leq a \log_2(n+2) + b$$

dove 
$$a=rac{1}{\log_2(\phi)}$$
 e  $b=-rac{\log_2(rac{1}{\sqrt{5}}\phi^3)}{\log_2(\phi)}$ 



## Rotazioni

Abbiamo visto come alberi binari di ricerca bilanciati consentono la ricerca di un dato elemento in un tempo logaritmico

**Problema**: l'inserimento o la cancellazione di un nodo potrebbero far perdere il bilanciamento di un albero AVL

È indispensabile mantenere il bilanciamento dell'albero anche se si inseriscono o si cancellano elementi

Il bilanciamento deve essere ripristinato mediante delle opportune operazioni sui nodi che prendono il nome di rotazioni



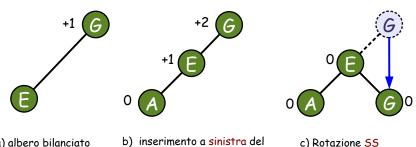
Esistono quattro tipi di rotazioni di base (semplici):

- rotazioni SS: inserimento a sinistra nel sottoalbero sinistro
- rotazioni SD: inserimento a destra nel sottoalbero sinistro
- rotazioni DD: inserimento a destra nel sottoalbero destro
- rotazioni DS: inserimento a sinistra nel sottoalbero destro

Queste rotazioni consistono nel portare l'elemento intermedio alla radice e nel far ridiscendere il nodo che causa lo sbilanciamento



Caso semplice: il bilanciamento è perso a seguito dell'inserimento di un nodo in un albero costituito da due soli nodi

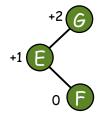


a) albero bilanciato

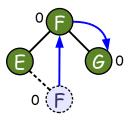
sottoalbero sinistro (sbilanciamento)



a) albero bilanciato



b) inserimento a destra del sottoalbero sinistro (sbilanciamento)

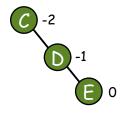


c) Rotazione 5D

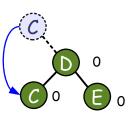
Si possono eliminare eventuali sbilanciamenti simmetrici usando le rotazioni DD e DS



a) albero bilanciato



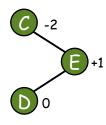
b) inserimento a destra del sottoalbero destro (sbilanciamento)



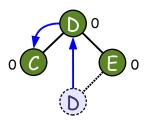
c) Rotazione DD



a) albero bilanciato



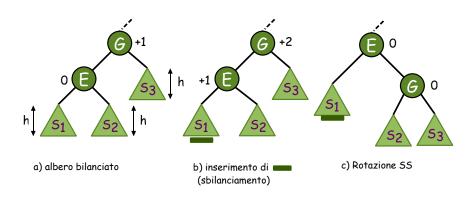
b) inserimento a sinistra del sottoalbero destro (sbilanciamento)

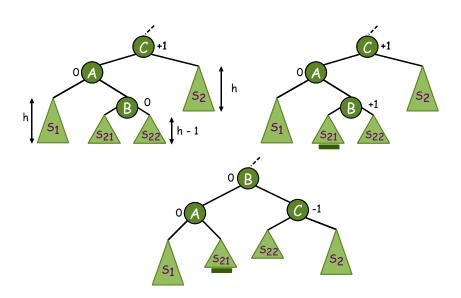


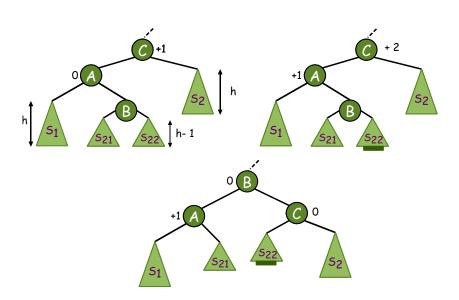
c) Rotazione DS

# In generale ...

Lo sbilanciamento (ed il conseguente ribilanciamento) si possono verificare alla radice di un sottoalbero di un albero più grande







## Inserimento di un elemento in un albero AVL

- (1) con il solito metodo di ricerca localizziamo la posizione in cui inserire il nuovo elemento; durante tale operazione memorizzato il puntatore al più basso nodo v il cui fattore di bilanciamento è -1 o +1
- (2) viene effettuato l'inserimento
- (3) vengono aggiornati i fattori di bilanciamento dei nodi lungo il percorso tra il nodo appena inserito e v; tutti i nodi lungo questo percorso avevano un fattore di bilanciamento 0 e vengono portati a +1 o -1; l'unico nodo che potrebbe registrare uno sbilanciamento è proprio v (nodo critico)

## Inserimento di un elemento in un albero AVL

- (4) se il fattore di bilanciamento di  $v \in +1$  (-1) ed il nodo è stato inserito nel sottoalbero destro (sinistro) il sottoalbero con radice v è automaticamente bilanciato; in caso contrario, il sottoalbero è sbilanciato ed richiede un ribilanciamento
- (5) viene determinata ed effettuata la rotazione necessaria

Tutti questi passi, rotazioni comprese, interessano solo i nodi lungo il cammino dalla radice alla nuova foglia inserita

Il costo dell'inserimento di un elemento è proporzionale all'altezza dell'albero e, poichè l'albero viene mantenuto bilanciato, tale costo è logaritmico



## Cancellazione di un elemento in un albero AVL

- (1) si effettua la cancellazione di un elemento come descritto dall'algoritmo **Tree-Delete**
- (2) si ricalcolano i fattori di bilanciamento mutati in seguito alla cancellazione; osserviamo che i sol fattori di bilanciamento che possono cambiare sono quelli dei nodi lungo il cammino dalla radice al nodo eliminato e che questi possono essere ricalcolati risalendo l'albero dal basso verso l'alto
- (3) eseguiamo una rotazione per ogni nodo il cui fattore di bilanciamento è  $\pm 2$



# Cancellazione di un elemento in un albero AVL

